Cleavage patterns, cell lineages, and development of a cytoplasmic bridge system in Volvox embryos

نویسندگان

  • K J Green
  • D L Kirk
چکیده

We report an extensive scanning electron microscope (SEM) study of cleavage planes, cell shape changes, and cell lineages during cleavage of the asexual embryo of Volvox carteri f. nagariensis. Although our data generally confirm the basic description of cleavage developed by others using light microscopy, there is one important exception. We observed that the fourth cleavage plane is much more oblique than had previously been recognized. We show that, as a result, the four tiers of cells in the 16-cell embryo overlap extensively, and the new generation of asexual reproductive cells, or gonidia, are derived from three of these tiers (rather than two, as previously believed). Our study focused on the development of the highly organized system of cytoplasmic bridges that appears during cleavage. Hundreds of cytoplasmic bridges are formed in each division cycle as a result of incomplete cytokinesis. Existing bridges are conserved and divided between daughter cells while new bridges are formed at each division. Hence, the number of bridges per embryo increases regularly even though the number per cell declines from the fourth cleavage on. The bridges are organized into bands that girdle the cells at a predictable level and exhibit a regular 500-nm interbridge spacing; bridge bands of adjacent cells are in register and form a structural continuum throughout the embryo which we term "The cytoplasmic bridge system." The only place where bridges are not present is along a pair of intersecting slits, called the phialopore. We describe in detail the development of this bridge-free region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The relationship between cell size and cell fate in Volvox carteri

In Volvox carteri development, visibly asymmetric cleavage divisions set apart large embryonic cells that will become asexual reproductive cells (gonidia) from smaller cells that will produce terminally differentiated somatic cells. Three mechanisms have been proposed to explain how asymmetric division leads to cell specification in Volvox: (a) by a direct effect of cell size (or a property der...

متن کامل

A revision of the cell lineages recently reported for Volvox carteri embryos

Volvox offers a unique opportunity to study the segregation of reproductive potential during development of a multicellular organism. At the sixth cleavage division of an asexual embryo of Volvox carteri, strain HK 10, one half of the 32 cells typically cleave unequally to yield 16 large gonidial (reproductive) initials and 16 smaller somatic initials, while the remaining cells divide equally t...

متن کامل

Differentiation in Volvox carteri: Study of Pattern Variation of Reproductive Cells

Volvox carteri, Differentiation, Embryogenesis, Cell Lineages, Pattern Formation Asexual spheroids of the multicellular green alga Volvox are composed of two types of cells: non-flagellated reproductive gonidia and Chlamydomonas-\ike flagellated somatic cells. They are committed by a differentiating cleavage during embryogenesis. The gonidia of the adult spheroids form a symmetrical pattern con...

متن کامل

I-38: Chromosome Instability in The Cleavage Stage Embryo

Recently, we demonstrated chromosome instability (CIN) in human cleavage stage embryogenesis following in vitro fertilization (IVF). CIN not necessarily undermines normal human development (i.e. when remaining normal diploid blastomeres develop the embryo proper), however it can spark a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. To s...

متن کامل

Mechanism of formation, ultrastructure, and function of the cytoplasmic bridge system during morphogenesis in Volvox

The cytoplasmic bridge system that links all cells of a Volvox embryo and plays a crucial role in morphogenesis is shown to form as a result of localized incomplete cytokinesis; sometimes bridge formation occurs before other regions of the cell have begun to divide. Vesicles, believed to be derived from the cell interior, align along the presumptive cleavage furrow in the bridge-forming region....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 91  شماره 

صفحات  -

تاریخ انتشار 1981